

Environment & Water Resources 3901 Via Oro Avenue, Suite 100 Long Beach, CA 90810 USA Telephone: +1 310 547 6400 Facsimile: +1 310 547 6410 worleyparsons.com

9 April 2007

Proj. No.: H0287D File Loc.: Long Beach

Mr. John Nebu Department of Toxics Substances Control 5796 Corporate Avenue Cypress, California 90630

Dear Mr. Nebu:

RE: FIRST QUARTER 2007 GROUNDWATER MONITORING REPORT, ASSOCIATED PLATING COMPANY, 9636 ANN STREET SANTA FE SPRINGS, CALIFORNIA

WorleyParsons Komex is pleased to submit the attached First Quarter 2007 Groundwater Monitoring Report for the Associated Plating Company (APC) located at 9636 Ann Street, in the city of Santa Fe Springs, California. This report presents the results obtained from the groundwater sampling conducted at the APC facility in February 2007. If you have any questions or comments, feel free to call at (310) 547-6349.

Sincerely, WorleyParsons Komex

Lee Paprocki, P.G. Project Manager

cc: Mr. Michael Evans Associated Plating Corporation 9636 Ann Street Santa Fe Springs, CA 90670

> Mr. Clare Golnick FX-6: Personal Privacy

Mr. Dave Klunk Santa Fe Springs Fire Department Hazardous Materials Division 11300 Greenstone Avenue Santa Fe Springs, CA 90670

ASSOCIATED PLATING COMPANY

First Quarter 2007 Groundwater Monitoring Report

Associated Plating Company, 9636 Ann Street, Santa Fe Springs, California

H0287D

9 April 2007

Environment & Water Resources

3901 Via Oro Ave., 1st Floor Long Beach, CA 90810 USA Telephone: +1 310 547 6400 Facsimile: +1 310 547 6410

worleyparsons.com

© Copyright 2007 WorleyParsons Komex

Lee Paprocki, a California Professional Geologist, as an employee of WorleyParsons Komex, with expertise in contaminant assessment and remediation, and groundwater hydrology, has reviewed the report with the title First Quarter 2007 Groundwater Monitoring Report, APC Facility, 9636 Ann Street, Santa Fe Springs, California. Her signature and stamp appear below.

STERED GE

LEE PAPROCKI

No. 7749

Lee Paprocki

Professional Geologist 7749

Disclaimer

The information presented in this document was compiled and interpreted exclusively for the purposes stated in Section 1 of the document. WorleyParsons Komex provided this report for Associated Plating Company solely for the purpose noted above.

WorleyParsons Komex has exercised reasonable skill, care, and diligence to assess the information acquired during the preparation of this report, but makes no guarantees or warranties as to the accuracy or completeness of this information. The information contained in this report is based upon, and limited by, the circumstances and conditions acknowledged herein, and upon information available at the time of its preparation. The information provided by others is believed to be accurate but cannot be guaranteed.

WorleyParsons Komex does not accept any responsibility for the use of this report for any purpose other than that stated in Section 1 and does not accept responsibility to any third party for the use in whole or in part of the contents of this report. Any alternative use, including that by a third party, or any reliance on, or decisions based on this document, is the responsibility of the alternative user or third party.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of WorleyParsons Komex.

CONTENTS

1.	INTRODUCTION	1
1.1	Geology and Hydrogeology	1
	1.1.1 Regional Geology and Hydrogeology	1
	1.1.2 Site Geology	2
	1.1.3 Site Hydrogeology	3
1.2	Site Conceptual Model	3
2.	GROUNDWATER SAMPLING	4
2.1	Groundwater Gauging and Sampling Procedures	4
2.2	Quality Assurance/Quality Control Sampling	4
2.3	Laboratory Analyses	4
3.	GROUNDWATER RESULTS	5
3.1	Groundwater Results	5
3.2	OA/QC Analytical Results	6
4.	CONCLUSIONS AND RECOMMENDATIONS	7
4.1	Conclusions	7
4.2	Recommendations	7
5.	CLOSURE	8
6	REFERENCES	q

resources & energy

ASSOCIATED PLATING COMPANY FIRST QUARTER 2007 GROUNDWATER MONITORING REPORT ASSOCIATED PLATING COMPANY, 9636 ANN STREET, SANTA FE SPRINGS, CALIFORNIA

Tables

- Monitoring Well Construction Details
- 2 Groundwater Elevations
- 3 TPH Carbon Range Groundwater Results
- 4 VOC Groundwater Results
- 5 Field Quality Assurance/Quality Control Sample Results

Figures

- 1 Site Location Map
- 2 Site Vicinity Map
- 3 Site Plan Showing Borehole and Monitoring Well Locations
- 4 Site Conceptual Model and Proposed Operable Units
- 5 Potentiometric Surface Contour Map February 14, 2007
- 6 TPH Concentrations in Groundwater February 2007
- 7 Select Chlorinated Solvent Concentrations in Groundwater February 2007

Appendices

- A Monitoring Well Sampling Forms
- B Laboratory Analytical Report

LIST OF ACRONYMS AND ABBREVIATIONS

APC Associated Plating Company

bgs below ground surface

cis-1,2-DCE cis-1,2-dichloroethene

COC chain-of-custody

DTSC Department of Toxic Substances Control

DWR Department of Water Resources

ft/ft feet per foot

L liter

LNAPL light non-aqueous phase liquid

MSL mean sea level

ug/L micrograms per liter

mg/L milligrams per liter

ml milliliter

QA quality assurance

QC quality control

PCE tetrachloroethene

TCE trichloroethene

TPH total petroleum hydrocarbons

VC vinyl chloride

VQA volatile organic analysis

VOCs volatile organic compounds

1. INTRODUCTION

This document has been prepared by WorleyParsons Komex on behalf of the Associated Plating Company (APC). The report summarizes the groundwater sampling conducted at 9636 Ann Street, Santa Fe Springs, California (herein referred to as the Site). The Site is located in Santa Fe Springs, California at an elevation of approximately 150 feet above mean sea level (MSL) with a local topographic gradient of less than 20 feet per mile to the southeast (Figures 1 and 2).

Monitoring wells, MW-1 through MW-4, were installed at the Site on April 5 and 6, 2006 (Table 1) and were first sampled a week later (Figure 3). Groundwater sampling and analysis completed at the Site during April 2006 identified the presence of chlorinated solvents and petroleum hydrocarbons.

The Department of Toxic Substances Control (DTSC), in their letter dated December 14, 2005 and in a meeting on August 22, 2006, requested that quarterly groundwater sampling be continued for one year. Therefore, first quarter groundwater sampling was conducted in February 2007 and is summarized in this report.

1.1 Geology and Hydrogeology

1.1.1 Regional Geology and Hydrogeology

Los Angeles County is underlain by the Los Angeles County Coastal Plain and is bounded by the Santa Monica Mountains to the north, the low lying Elysian, Repetto, Merced, and Puente Hills to the northeast, a political boundary coinciding with the boundary between Los Angeles County and Orange County to the southeast, and the Pacific Ocean to the southwest. Alluvial fans formed by the Los Angeles, Rio Hondo, and San Gabriel Rivers systems have coalesced to form the Downey Plain, which represents the largest area of recent alluvial deposition in the Coastal Plain. The Downey Plain is bordered by the La Brea, Montebello, and Santa Fe Spring Plains, and the Coyote hills to the north and northeast, the Newport Inglewood uplift to the southwest, and the Coastal Plain of Orange County to the southeast (DWR, 1961). The Downey Plain slopes gently to the south with an average gradient of less than 18 feet per mile. The Site is located between the Downey Plain and the Santa Fe Springs Plain. The Santa Fe Springs Plain is located south of Whittier and east of the San Gabriel River, in the area of the City of Santa Fe Springs. The Santa Fe Springs Plain is a low, slightly rolling topographic feature and represents a continuation of the Coyote Hills Uplift to the southeast.

The Coastal Plain of Los Angeles County is a deep groundwater reservoir filled by unconsolidated alluvial sands, gravels, clays, and silts. Fresh-water aquifers extend to depths of over 2,000 feet. The California Department of Water Resources (DWR) divided the coastal plain into four groundwater basins: the Santa Monica Basin, the West Coast Basin, the Hollywood Basin, and the Central Basin (DWR, 1961). The Site lies within the Central Basin, which is further divided into four parts for descriptive purposes: the Los Angeles Forebay Area, the Montebello Forebay Area, the Whittier Area, and the Central Basin Pressure Area.

The Site is located in the Central Basin Pressure Area. The Central Basin Pressure Area is called a "pressure area" because the aquifers within it are confined by aquicludes over most of the area. The major regional aquitards and aquifers beneath the Site occur in the Recent Alluvium, the Upper Pleistocene Lakewood Formation, and the Lower Pleistocene San Pedro Formation. Depth intervals for the major regional hydro-stratigraphic units (aquitards and aquifers) in the Site vicinity are presented in the table below:

Regional Hydro-stratigraphic Unit	Formation	Approximate Depth Intervals (feet below ground surface)
Bellflower Aquitard	Recent Alluvium	0 – 30
Gaspur	Recent Alluvium	30 – 65
Gage	Lakewood	65 – 110
Hollydale-Jefferson	San Pedro	110 - 130
Lynwood	San Pedro	130 – 210
Silverado	San Pedro	210 – 360
Sunnyside	San Pedro	360 - <mark>61</mark> 0

1.1.2 Site Geology

The Site is underlain with artificial fill composed primarily of silt from the ground surface to an approximate depth of 7 feet below ground surface (bgs). At approximately 7 feet bgs a concrete pad is encountered, which is approximately four inches thick. Underlying the concrete pad is a silt and clay layer that extends to approximately 25 feet bgs. Below the silt and clay layer is a sand and gravelly

sand layer that extends to at least 48 feet bgs (Figure 4). Both the silt and clay layer and the sand and gravel layer correspond to the Recent Alluvium.

1.1.3 Site Hydrogeology

In April 2006, first groundwater was detected between 34 and 38 feet bgs (approximately 112 feet MSL) and corresponds to the Gaspur Aquifer. In February 2007, water levels were between 33.80 and 37.79 feet bgs. Groundwater flow varies between the south-southwest and south-southeast at an approximate gradient of 0.001 feet per foot (ft/ft).

1.2 Site Conceptual Model

In accordance with the Site conceptual model developed below, the subsurface at the Site and Site vicinity was previously divided into three operable units: Operable Unit 1 (OU-1), Operable Unit 2 (OU-2), and Operable Unit 3 (OU-3) (Figure 4). OU-1 consists of fill material underlying the Site from ground surface to the top of the buried concrete pad (approximately 7 feet bgs). OU-2 consists of on-Site soils and the first groundwater zone, from the base of the concrete pad to approximately 50 feet bgs. OU-3 consists of the off-Site soils and the first groundwater zone.

Fill material in OU-1 is impacted by petroleum hydrocarbons (C7 to C36), fuel volatile organic compounds (VOCs), probably representing pre-existing contamination from the former storage tank, and chlorinated solvent compounds, consistent with releases of tetrachloroethene (PCE) from the APC facility.

2. GROUNDWATER SAMPLING

2.1 Groundwater Gauging and Sampling Procedures

Well construction details for the four groundwater monitoring wells (MW-1 through MW-4) are included in Table 1. On February 14, 2007, the four monitoring wells were gauged and then purged and sampled. Following gauging, the wells were purged of at least three well volumes of water, allowed to recover, and then sampled. Groundwater gauging and sampling field notes are provided in Appendix A.

2.2 Quality Assurance/Quality Control Sampling

Field quality assurance/quality control (QA/QC) samples were collected on February 14, 2007, during groundwater sampling activities. An equipment rinsate blank was collected from the groundwater electric pump by running distilled water through the pump hose into two 40-milliliter (ml) volatile organic analysis (VOA) vial. A field blank was collected by filling two 40 ml VOA vial with distilled water, leaving them exposed to ambient air during collection of the equipment blank, and then sealing them. A trip blank, consisting of one sealed 40 ml VOA vial filled with distilled water, was obtained from the laboratory and kept in the ice-chest throughout the day to evaluate if there was any introduction of VOCs during storage and transportation.

2.3 Laboratory Analyses

Monitoring well groundwater samples and OA/QC samples were labeled, placed in an ice chest, and delivered under chain-of-custody (COC) to Sierra Analytical Inc. of Laguna Hills, California, within 24 hours of collection. The samples were analyzed for the following:

- Total petroleum hydrocarbons (TPH), ranging from C7 to C36, in accordance with USEPA Method 8015B; and
- VOCs in accordance with USEPA Method 8260B.

3. GROUNDWATER RESULTS

3.1 Groundwater Results

Groundwater depths in the four monitoring wells ranged from 33.80 to 37.79 feet bgs (113.13 to 112.98 feet MSL) (Table 2). During this sampling event, groundwater flow was generally towards the south-southwest at a gradient of 0.001 ft/ft (Figure 5).

A sheen of light non-aqueous phase liquid (LNAPL) was observed on the product level probe in all four wells: MW-1, MW-2, MW-3, and MW-4.

Groundwater gauging and laboratory analytical results are provided in Tables 2, 3 and 4. The complete laboratory report, including COC and laboratory QA/QC analyses, is provided in Appendix B.

TPH groundwater results are presented in Table 3. Petroleum hydrocarbons were detected in groundwater collected from all four monitoring wells. The lateral distribution of TPH in groundwater for this sampling event is depicted in Figure 6. TPH concentrations in groundwater collected from all four monitoring wells have decreased from April 2006 to February 2007.

VOC groundwater results are presented in Table 4 and Figure 7. Historic groundwater results are included in Table 4.

PCE has consistently not been detected above the laboratory reporting limits in groundwater collected from upgradient well MW-1. Trichloroethene (TCE) concentrations detected in groundwater collected from well MW-1 have increased dramatically from 1.3 ug/L in April 2006 to 55 ug/L in February 2007. Vinyl chloride (VC) concentrations detected in groundwater collected from well MW-1 have decreased from 20 ug/L in April 2006 to 7.4 ug/L in February 2007. Trans- 1,2 - Dichloroethene (trans-1,2-DCE) concentrations have increased slightly from 5.2 ug/L in April 2006 to 9.2 ug/L in February 2007. Cis-1,2-Dichloroethene (cis-1,2-DCE) concentrations have increased slightly as well, from 5.5 ug/L in April 2007 to 15 ug/L in February 2007.

PCE, TCE, cis-1,2-DCE, and trans-1,2-DCE have consistently not been detected above the laboratory reporting limits in groundwater collected from well MW-2. VC concentrations have slightly decreased from 50 ug/L in April 2006 to 29 ug/L in February 2007.

PCE, TCE, cis-1,2-DCE, and trans-1,2-DCE have consistently not been detected in groundwater collected from well MW-3. VC concentrations have remained fairly stable in groundwater collected from well MW-3, with detections ranging from 53 ug/L to 34 ug/L.

PCE concentrations in groundwater collected from well MW-4 have remained relatively stable, ranging from 1.2 ug/L to 5.8 ug/L over the past four quarters. In February 2007, TCE was first detected in groundwater at the laboratory reporting limit of 1.0 ug/L. Trans-1,2-DCE was not detected above the laboratory reporting limit. Cis-1,2-DCE was detected in groundwater collected during the last two quarterly events at approximately the laboratory reporting limit of 1.0 ug/L. VC concentrations collected in groundwater from well MW-4 have slightly decreased from 57 ug/L in April 2006 to 34 ug/L in February 2007.

3.2 QA/QC Analytical Results

The results of QA/QC sample analyses are provided in Table 5. Groundwater laboratory QA/QC samples were within acceptable levels. A review of the laboratory analytical report indicates that all internal laboratory QA/QC calibration checks, matrix spike, and matrix spike duplicate recoveries were within acceptable ranges (Appendix B). Chlorinated solvents were not detected in the equipment rinsate blank, field blank or trip blank. Groundwater results are deemed acceptable for the following reasons: standard decontamination practices were followed and no analytes were detected above the laboratory reporting limit in any of the sampling blanks.

4. CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

In February 2007, groundwater flow beneath the Site was towards the south-southwest at a gradient of 0.001 ft/ft and depth to groundwater ranged from to 33.80 to 37.79 feet bgs (113.13 to 112.98 feet MSL).

TCE concentrations have dramatically increased in groundwater collected from the upgradient well MW-1. VC concentrations in groundwater have decreased from 20 ug/L to 7.4 ug/L in well MW-1. Generally, chlorinated solvent concentrations in downgradient groundwater have remained fairly constant. PCE, TCE, cis-1,2-DCE, and trans-1,2-DCE have consistently not been detected in groundwater collected from wells MW-2 and MW-3. Chlorinated solvent concentrations in groundwater collected from well MW-4 have remained relatively stable.

4.2 Recommendations

In accordance with the DTSC's request, one additional quarterly groundwater sampling event should be conducted to further analyze the contaminant trends.

5. CLOSURE

We trust that this report satisfies your current requirements and provides suitable documentation for your records. If you have any questions or require further details, please contact the undersigned at any time.

Respectfully Submitted:

WorleyParsons Komex

Lindsay Masters

Staff Geologist
Michael F. Marth

Senior Review by

Lee Paprocki, PG

Project Manager

REFERENCES

DWR, 1961. Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County. Bulletin No. 104. Appendix A Ground Water Geology. State of California Department of Water Resources Southern District. Dated June 1961.

Table 1
Monitoring Well Construction Details
Associated Plating Company

Well ID	Drilling Method	Installation Date	Well Casing Diameter (inches)	Latitude	Longitude	Wellhead Elevation (feet amsl)	Top of Casing Elevation (ft amsl)	Well Depth (feet bgs)	Well Depth (feet amsl)	Screen Slot Size (inches)	Screened Interval (feet bgs)	Screened Interval (feet amsl)
MW-1	HSA	4/5/2006	2	33.9527753	-118.0593	147.36	146.93	43.0	103.9	0.01	33 to 43	114.35 to 104.35
MW-2	HSA	4/5/2006	2	33.9524570	-118.0592	149.81	149.41	47.0	102.4	0.01	37 to 47	112.79 to 102.79
MW-3	HSA	4/6/2006	2	33.9523123	-118.0593	151.06	150.67	47.0	103.7	0.01	37 to 47	114.04 to 104.04
MW-4	HSA	4/6/2006	2	33.9522795	-118.0595	151.13	150.77	47.0	104.1	0.01	37 to 47	114.13 to 104.13

1) amsl = above mean sea level

2) bgs = below ground surface

3) HSA = hollow stem auger

Table 2
Groundwater Elevations
Associated Plating Company

Well ID	Top of Casing Elevation (feet amsl)	Date	Depth to Groundwater (feet btoc)	Product Thickness (feet)	Groundwate Elevation (feet amsl)
MW-1	146.93	04/12/06	34.33	Sheen	112.60
		08/31/06	33.03	Sheen	113.90
		11/13/06	33.55	Sheen	113.38
		02/14/07	33.80	Sheen	113.13
MW-2	149.41	04/12/06	36.87	0.00	112.54
		08/31/06	35.62	Sheen	113.79
		11/13/06	36.05	Sheen	113.36
		02/14/07	36.29	Sheen	113.12
MW-3	150.67	04/12/06	38.20	Sheen	112.47
		08/31/06	36.89	0.00	113.78
		11/13/06	37.38	0.01	113.30
		02/14/07	37.62	Sheen	113.05
MW-4	150.77	04/12/06	38.36	Sheen	112.41
		08/31/06	37.04	Sheen	113.73
		11/13/06	37.54	Sheen	113.23
		02/14/07	37.79	Sheen	112.98

¹⁾ bgs = Below ground surface

²⁾ amsl = above mean sea level

³⁾ btoc = below top of casing

⁴⁾ Groundwater elevations are corrected for the presence of measurable free product using a specific gravity of 0.88

Table 3
TPH Carbon Range Groundwater Results
Associated Plating Company

		MW-1	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-2	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4
Analyte	Units	4/12/06	8/31/06	11/13/06	2/14/07	4/12/06	8/31/06	11/13/06	2/14/07	4/12/06	8/31/06	11/13/06	2/14/07	4/12/06	8/31/06	11/13/06	2/14/07
<c8< td=""><td>mg/L</td><td><0.10</td><td><0.10</td><td><0.010</td><td><0.20</td><td><1.0</td><td>0.11</td><td>0.014</td><td><0.20</td><td><1.0</td><td>0.051</td><td>0.033</td><td><0.20</td><td><1.0</td><td>0.084</td><td>0.060</td><td><0.20</td></c8<>	mg/L	<0.10	<0.10	<0.010	<0.20	<1.0	0.11	0.014	<0.20	<1.0	0.051	0.033	<0.20	<1.0	0.084	0.060	<0.20
C8-C9	mg/L	< 0.10	< 0.10	< 0.010	< 0.20	<1.0	0.040	< 0.010	<0.20	<1.0	0.014	< 0.010	< 0.20	<1.0	0.031	0.010	< 0.20
C9-C10	mg/L	< 0.10	< 0.10	0.010	< 0.20	1.1	0.073	< 0.010	< 0.20	<1.0	0.030	0.018	< 0.20	<1.0	0.056	0.040	< 0.20
C10-C11	mg/L	0.33	0.13	0.029	<0.20	2.0	0.16	0.015	<0.20	<1.0	0.076	0.089	0.82	<1.0	0.13	0.13	<0.20
C11-C12	mg/L	0.66	0.20	0.047	1.3	2.8	0.14	0.028	0.98	<1.0	0.087	0.091	1.2	<1.0	0.17	0.12	1.2
C12-C14	mg/L	5.1	1.2	0.28	1.2	5.9	0.70	0.17	1.4	<1.0	0.26	0.44	3.1	1.8	0.40	0.68	1.4
C14-C16	mg/L	6.7	1.6	0.42	1.7	5.8	0.76	0.16	1.5	1.5	0.34	0.43	2.5	5.4	0.56	0.46	1.4
C16-C18	mg/L	6.8	1.6	0.50	0.70	5.0	0.63	0.14	0.72	<1.0	0.24	0.37	1.9	4.4	0.39	0.42	1.2
C18-C20	mg/L	4.1	0.94	0.29	1.1	3.6	0.54	0.18	1.1	1.1	0.19	0.27	1.6	4.0	0.27	0.27	0.60
C20-C24	mg/L	12	2.4	0.71	1.8	7.0	1.1	0.083	1.3	<1.0	0.29	0.34	2.9	5.2	0.48	0.48	1.6
C24-C28	mg/L	16	4.2	0.84	2.0	7.1	1.3	0.074	1.7	2.6	0.31	0.32	3.1	9.6	0.57	0.43	1.5
C28-C32	mg/L	12	3.9	0.62	2.9	10	1.1	0.16	2.6	35	0.23	0.27	4.0	27	0.46	0.30	2.4
>C32	mg/L	0.65	0.28	0.037	0.94	3.5	0.046	0.010	0.84	4.3	0.015	0.017	1.4	2.6	0.030	0.019	1.1
Total C7-C36	mg/L	65	16	3.8	14	54	6.7	1.0	12	46	2.1	2.7	23	60	3.6	3.4	12

¹⁾ TPH = total petroleum hydrocarbons (carbon range) analyzed using EPA Method 8015B

²⁾ mg/L = milligrams per liter

^{3) &}lt;0.10 = compound not detected at or above the indicated laboratory reporting limit

⁴⁾ Bold type indicates compound was detected.

Table 4
VOC Groundwater Results
Associated Plating Company

		Location MW-1	IAIAA-I	MAA-1	IAI AA- I	MW-2	IAIAA-5	MAA-5	MW-2	MW-3	MW-3	14144-2	MW-3	14144	19199-4	WIVV-4	MW-4
Analyte	Units	Date 4/12/06	8/31/06	11/13/06	2/14/07	4/12/06	8/31/06	11/13/06	2/14/07	4/12/06	8/31/06	11/13/06	2/14/07	4/12/06	8/31/06	81 1/13/0 6	2/14/07
1,1,1,2-Tetrachloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.5
1,1,2-Trichloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	1.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloropropylene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloropropane	ug/L	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0
1,2,4-Trichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trimethylbenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	23	3.4	1.4	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromo-3-Chloropropane (DBCP)	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5. <mark>0</mark>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dibromoethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	6.3	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloropropane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-Dichloropropane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Chlorotoluene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Phenylbutane	ug/L	<1.0	<1.0	<1.0	<1.0	16	12	8.9	11	16	11	8.1	14	16	13	9.0	16
4-Chlorotoluene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	ug/L	1.3	<1.0	<1.0	<1.0	2.3	3.1	2.8	3.0	2.0	3.7	3.4	2.9	3.6	7.6	6.4	6.9
Bromobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	ug/L	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0
Buty benzene,n-	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon Tetrachloride	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CFC-11	ug/L	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0
CFC-12	ug/L	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0
Chlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobromomethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorodibromomethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	ug/L	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0
Chloroform	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	ug/L	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene (cis 1,2-DCE)	ug/L	5.5	8.4	8.3	15	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2	1.1
cis-1,3-Dichloropropene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cymene	ug/L	3.2	1.8	2.0	2.4	4.1	3.2	2.9	3.4	1.4	<1.0	<1.0	<1.0	4.1	<1.0	2.6	4.3
Dibromomethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Diisopropyl Ether (DIPE)	ug/L		<1.0		-		<1.0		_		<1.0	_		:	<1.0		

Table 4
VOC Groundwater Results
Associated Plating Company

		Location MW-1	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-2	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4
Analyte	Units	Date 4/12/06	8/31/06	11/13/06	2/14/07	4/12/06 8/31/0611/13/062/14/07		4/12/06 8/31/0611/13/062/14/07			2/14/07	4/12/06 8/31/06 1/13/06 2/14/07					
Ethy benzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	21	3.1	1.1	1.0	1.5	<1.0	<1.0	<1.0
Ethyl-tert-butyl Ether (ETBE)	ug/L		<1.0		-		<1.0		-		<1.0	_	-	199	<1.0		
Hexachloro-1,3-Butadiene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene	ug/L	1.9	<1.0	<1.0	<1.0	75	57	44	50	83	74	50	76	86	87	59	81
Methylene Chloride	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methyl-tert-Butyl Ether (MTBE)	ug/L	8.9	2.0	1.0	<1.0	3.5	3.0	2.4	1.9	1.9	2.2	1.8	1.4	3.0	2.8	2.2	1.3
Naphthalene	ug/L	1.6	<1.0	<1.0	<1.0	16	12	4.6	1.9	46	8.7	2.6	2.1	4.5	1.9	<1.0	<1.0
Propy benzene,n-	ug/L	<1.0	<1.0	<1.0	<1.0	9.4	3.5	3.1	3.6	22	5.3	4.8	6.0	10	8.9	7.0	6.1
Styrene (Monomer)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
tert-armyl-methyl Ether (TAME)	ug/L		<1.0				<1.0		-		<1.0	-	-	(<1.0		
terl-butyl Alcohol (TBA)	ug/L		<5.0		-		<5.0		-		<5.0	-		(<5.0		
tert-Butylbenzene	ug/L	1.6	<1.0	<1.0	<1.0	1.9	1.7	1.4	1.6	<1.0	3.4	1.2	1.8	<1.0	1.4	1.2	2.1
Tetrachloroethene (PCE)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.7	1.2	3.6	5.8
Toluene	ug/L	<1.0	<1.0	15	<1.0	<1.0	<1.0	10	<1.0	<1.0	1.6	8.5	<1.0	<1.0	<1.0	6.6	<1.0
trans-1,2-Dichloroethene	ug/L	5.2	3.6	4.0	9.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tribromomelhane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene (TCE)	ug/L	1.3	21	28	55	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0
Vinyl Chloride (VC)	ug/L	20	9.9	6.6	7.4	50	47	21	29	53	58	34	44	57	54	36	34
Xylene, O-	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Xylene, P-, M-	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	28	3.1	1.6	1.4	<1.0	<1.0	<1.0	<1.0

1) VOC = volatile organic compounds analyzed using EPA Method 8260B

2) ug/L = micrograms per liter

3) <1.0 = compound not detected at or above the indicated laboratory reporting limit

4) -= not analyzed

5) Bold type indicates compound was detected.

Table 5
Field Quality Assurance/Quality Control Sample Results
Associated Plating Company

		Sample Type		Equipme	en <mark>t Blan</mark> k			Field	Blank			Trip	Blank	
		Sample Date	4/12/06	8/31/06	11/13/06	2/14/07	4/12/06	8/31/06	11/13/06	2/14/07	4/12/06	8/31/06	11/13/06	2/14/07
Analyte	Units	Sample ID	EB-41206	EB083106	EB-111306	EB-021407	FB-41206	FB083106	FB-111306	FB-021407	TB-41206	TB083106	TB-111306	TB-21407
SW8015-g			24 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	- 1000 W 2101 202 N		11 MM 0 = 100 MM 14 MW		THE STATE OF THE S	THE COURSE OF STREET	14.30 P. C.	THE POWER AND ADDRESS.	The Control of the Co	TAT WE I TANGETON	20, 30 % 301.1
Phc As Gasoline	ug/L		_	_	-24	1144	122	22	42	124	227	_	2.77	14
TPH - Carbon Range	3													
<c8< td=""><td>mg/L</td><td></td><td><0.010</td><td>< 0.010</td><td><0.010</td><td>-</td><td><0.010</td><td><0.010</td><td>< 0.010</td><td>-</td><td></td><td>_</td><td>H():</td><td>-</td></c8<>	mg/L		<0.010	< 0.010	<0.010	-	<0.010	<0.010	< 0.010	-		_	H ():	-
C8-C9	mg/L		<0.010	<0.010	<0.010		<0.010	<0.010	<0.010	-	>	_		
C9-C10	mg/L		<0.010	<0.010	<0.010		<0.010	<0.010	<0.010			_	 c	
C10-C11	mg/L		<0.010	<0.010	<0.010		<0.010	<0.010	<0.010),	_		
C11-C12	mg/L		<0.010	<0.010	<0.010		<0.010	<0.010	< 0.010	-	4-8	_	4-1	122
C12-C14	mg/L		<0.010	<0.010	<0.010	144	<0.010	<0.010	<0.010			_	221	
C14-C16	mg/L		<0.010	<0.010	<0.010	144	<0.010	<0.010	<0.010		(##)X	_	44 0)	
C16-C18	mg/L		<0.010	<0.010	0.038	 -	<0.010	<0.010	<0.010	-):	_	11 0	
C18-C20	mg/L		<0.010	<0.010	0.048	I 	<0.010	<0.010	<0.010	-	 2	_		-
C20-G24	mg/L		<0.010	<0.010	0.089	H-	<0.010	<0.010	<0.010	-		_		
C24-C28	mg/L		<0.010	<0.010	0.064		<0.010	<0.010	<0.010	-		_		
C28-C32	mg/L		<0.010	<0.010	0.080	Tue	<0.010	<0.010	<0.010	12-		-	527	142
>C32	mg/L		<0.010	<0.010	<0.010		<0.010	<0.010	<0.010			_		12-2
Total C7-C36	mg/L		<0.050	< 0.050	0.32		<0.050	<0.050	< 0.050		400	_	140)	
/OCs														
1,1,1,2-Tetrachloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloropropylene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloropropane	ug/L		<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0
1,2,4-Trichlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trimethylbenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromo-3-Chloropropane (DBCP)	ug/L		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dibromoethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloropropane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-Dichloropropane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Chlorololuene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Phenylbutane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Chlorololuene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	ug/L		<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0

152617-1.pdf Page 1 of 2 2/28/2007

Table 5
Field Quality Assurance/Quality Control Sample Results
Associated Plating Company

		Sample Type		Equipme	ent Blank			Field	Blank			Trip	Blank	
		Sample Date	4/12/06	8/31/06	11/13/06	2/14/07	4/12/06	8/31/06	11/13/06	2/14/07	4/12/06	8/31/06	11/13/06	2/14/07
Analyte	Units	Sample ID	EB-41206	EB083106	EB-111306	EB-021407	FB-41206	FB083106	FB-111306	FB-021407	TB-41206	TB083106	TB-111306	TB-21407
Buty benzene,n-	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon Tetrachloride	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CFC-11	ug/L		<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0
CFC-12	ug/L		<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0
Chlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobrornornethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorodibromomethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	ug/L		<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0
Chloroform	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	ug/L		<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene (cis 1,2-DCE)	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cyrnene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Diisopropyl Ether (DIPE)	ug/L		_	<1.0				<1.0				<1.0		
Ethy benzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethyl-tert-butyl Ether (ETBE)	ug/L		_	<1.0			-	<1.0				<1.0		
Hexachloro-1,3-Butadiene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropy benzene	ug/L		<1.0	2.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methylene Chloride	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methyl-tert-Butyl Ether (MTBE)	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Propylbenzene,n-	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrene (Monomer)	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
tert-amyl-methyl Ether (TAME)	ug/L		_	<1.0				<1.0			-	<1.0		
tert-butyl Alcohol (TBA)	ug/L		_	<5.0				<5.0				<5.0		
tert-Butylbenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene (PCE)	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	ug/L		<1.0	<1.0	11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tr bromomethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene (TCE)	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl Chloride (VC)	ug/L		<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.0	<1.0	<1.0	<1.0
Xylene, O-	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Xylene, P-, M-	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

¹⁾ TPH = total petroleum hydrocarbons (carbon range) analyzed using EPA Method 8015B

²⁾ VOCs = volatile organic compounds analyzed using EPA Methed 8260B

³⁾ mg/L = milligrams per liter

⁴⁾ ug/L = micrograms per liter

^{5) &}lt;1.0 = compound not detected at or above the indicated laboratory reporting limit

⁶⁾ Bold type indicates compound was detected.

^{7) - =} not analyzed

Appendix A Monitoring Well Sampling Forms

152276_1 H0287D: 16 March 2007

M	WorleyParsons	Komex
	resources & energy	

FLUID LEVEL MEASUREMENTS

STAFF:	Papio	chi s G	Davis			DATE:	2/14/	7
LOCATION: /	4PC 91	636 Ann	St Sant	a Fr Sprin	95	DAY:	S S M	T W T F
SITE CONDIT	, ONS / WEAT	ى <u>5</u> HER:	10° 4			PROJECT	NAME: <u> </u>	T W T F
OTHER:			(PROJECT /	TASK NUMB	er: 402877020
DATUM: (ie. F	eet MSL, ber	nchmark etc.):	F1c1	MSL		Instrument:	soling	te
Time	Well	Measuring	Depti	h Measuremen	ts	Product	Water	Comments
	No.	Pt. Elev. 1	To Product	To Water	To Bottom	Thickness	Elevation ¹	Conditions of well box, water in box,
		Feet	Feet be	low measuring	point	Feet	Feet	lack of measuring point, etc.
8:25	MW-1		Shein	33.50		Sheen		and
8:33	MN-2		Sheen	36,29		Sheen		good
8:50	Mw-3		Sheen	37.62		Shen		good
4153	MW-41		Shun	37.79		Shun		nood
			21.1	,				J
					,		·	
			·					
	· .							
REQUIRED AC	TIONS:				i		<u></u>	
	-							
							-	
		, ,		· · · · · · · · · · · · · · · · · · ·				
PREPARED BY	1: L Pape	roch.	REVIEWED	BY:			DISTRIBUTE	ED TO:
* Indicate if Elevatio								

Page ____ of ___(

draft excel forms / Fluid levels

MONITORING WELL SAMPLING FORM

resources & energy

5455 GARDEN GROVE BLVD., SECOND FLOOR WESTMINSTER, CA 92683-8201, USA

Project Name: APC	Date: 2/14/07
Project No.: +07570000	Time: 1,00
Employee Name: ZP 'y (D	Page of (

IEL.: / (4.3/)	7.113/ FA	K.: / 14.3/9.116U	,			Employe	e Name: Z	1770	7D		rage or (
WELL CONSTRUCTION DETAILS WELL NO					NO;M	W-1	LOCATION SKETCH:						
DATES		Casing Type:).	DVC	Screen Ty	pe: 121	16							
Constructed: Diameter: 2 //				Diamter:	3''		See sit majo						
Developed: Length: I													
Last Sampled: T.D.: 4 3 Slot Size:													
					1								
WELL CONDITION: 1000 Water Depth: 33.80													
G.S. Elev.: Water Depth: 33. 10 F.P. Thickness: 51410													
T.C. Elev.:		Water Column:	9,2	Water Odd	or:								
W.L. Elev:		Casing Volume:	1,47	Turbidity:									
Note: 2 = 0.16	g/ft; A" = 0.65	g/ft; and 6" = 1.5 g	/ft				1						
							1						
Well Purgi	ng Method	Pronsoon	TIAL	Purge V	ol.: 4,	4	1						
		Variation.	1				•						
WELL PUR	RGING AN	D RECOVERY	ANALYS	IS:									
Time	W.L.	Purge Rate	Vol.	Temp.	рН	Conduct.	Turbid	D.O.	ORP	Sample No.	REMARKS		
<u>a.11</u>	177.2.	r urge reace	6.1	18	6.35	214	276	15.5.	- Ora	bampie 140.	Slight sedimnt		
9 12			1	11:	(27	217		 	<u> </u>	<u> </u>	1'. /		
913	 		1961	19.2	6.31	8,14	142	 	ļ		(1940)		
9.14	 	rigpm	Lyul	201	6.71	211	120	 	<u> </u>		 		
913			344	dis	6,73	9.1/	67				l <i>\</i>		
116			3'	2/3	7	4.16	38	-	<u></u>		1		
9:17		<u></u> .	4.5	32,1	6,441	2.15	25	 	ļ	· · · · · · · · · · · · · · · · · · ·			
								ļ					
4:20	33,82							ļ			1		
													
		-			<u> </u>		,						
									-				
SAMPLIN	G INFORM	AATION:				-							
Sample No.		Time	Sampling	Method	Contain	er	Analysis Required						
Millia	21407	9:25	disp.ba	riler	100 US 1	rlider	Balo + TPH rarbon range						
EB-02	1407	9'35	off of T	านคาก	roust	11.41	1, 1,						
FB-031407 940			- pump rous		1,		11			1,			
1 1 List	::IV I	1 1/2							-				
ADDITION	NAL INFO	RMATION:			·		L						
		35.64		\10	11	levi	1 61	1000	154				
- 40	0 -	- V /		V	, , , ,	1, 07	' ' '	COU	7				
													

WorleyParsons Komex MONITORING WELL SAMPLING FORM

resources & energy

5455 GARDEN GROVE BLVD., SECOND FLOOR WESTMINSTER, CA 92683-8201, USA TEL: 714.379.1157 FAX.: 714.379.1160

Project Name: Lee Pancoch	Date: 2/14/07
Project No.: H03875026	Time: 9.50
Employee Name: LP + 60	Page of

				TATEST T	110	441 0	T					
WELL CON	NSTRUCTI	ON DETAILS		WELI	4		LOCAT	TION SKETCH	[:			
DATES			Prc	Screen Ty	pe: PU	<i>, </i>	j					
Constructed:		Diameter:	3 /4	Diamter:	<u>)"</u>							
Developed:		Length:		Length:								
Last Sampled:		T.D.: 47	?	Slot Size:						. 4	001 -	
							1		116	514	Politic	
WELL CON	NDITION:		Water 1	Depth:	36.	29	1				•	
G.S. Elev.:		Water Depth:	36.29	F.P. Thick								
T.C. Elev.:		Water Column:	10.71	Water Od								
W.L. Elev:		Casing Volume:	17	Turbidity:								
Noter 2" = 0.16	g/ft; 4" = 0.65	g/ft; and 6" = 1.5 g	/ft									
Well Purgir	ng Method	: Mon So	20	Purge V	'ol.: 5	.)						
WELL PUR	GING AN	D RECOVERY				mslem	nfu					
Time	W.L.	Purge Rate	Vol.991	Temp.	pН	Conduct.	Turbid.	D.O.	ORP	Sample No.	REMARKS	
9:55			0.1	17.2	6.77	147	188					
957			l	21.4	6.74	1.09	39				111911	
9:59			2	31.7	6.70	1.42	17				11	
10:00		~ 110m	3	21-1	6.49	1.00	7				le :	
10:01		1	3	21.7	667	1.42	4	1			'/	
10:02	,		5	21.7	(1/10	1.42	1					
10:05				, , , , , , , , , , , , , , , , , , ,	7.47	1.0					11,000	
10:05	36,31				<u> </u>							
No -CG	301 71											
								 				
				<u> </u>				l				
SAMPLING	SINFORM	IATION:						L				
Sample No.		Time	Sampling	Method	Containe	er	Analysis 1	Required				
	21407	10:07	disp.		voa +		8240 + TPH Carbon range					
/110 u	WI IV I	1007	(X-7-0	Juno	700	1710	0946	<u>/ </u>	1 11 2	ar you	Wige	
ADDITION	IAL INFO	RMATION:	<u> </u>									
	6/20%	~ 38,4	12		17 0	110	(1)	111	<u> </u>			
<i>I</i>	U W	70,	ر ا	\	ares	17.0	N.	1 ((() VC	19		
										ı		

WorleyParsons Komex

MONITORING WELL SAMPLING FORM

resources & energy

5455 GARDEN GROVE BLVD., SECOND FLOOR

WESTMINSTER, CA 92683-8201, USA

TEL.: 714.379.1157 FAX.: 714.379.1160

 Project Name:
 APC
 Date: 3 1/4 / 0 7

 Project No.:
 40357 D030
 Time: 1033

 Employee Name:
 AP f FP
 Page of 1

WELL CON	NSTRUCTI	ION DETAILS		WELI	NO: N	112-3			LOCAT	TON SKETCH	ł:		
DATES		Casing Type:	PVC	Screen Typ		16]						
Constructed:		Diameter:) ((Diamter:	à"								
Developed:		Length:		Length:			Sie site						
Last Sampled:	Last Sampled: T.D.: 47 Slot Size:							5	18	2,10			
					~~~			,		20/4/2			
WELL CON	IDITION:	7000	Water I				\$	nog					
G.S. Elev.:		Water Depth:	3//63	F.P. Thicks									
T.C. Elev.:		Water Column:	<u>d 5</u> 2	Water Odd			1						
W.L. Elev:	}	Casing Volume:	1.2	Turbidity:									
Note: 3" = 0.16	a/ft; 4" = 0.65	g/ft; and 6" = 1.5 g	/ft				ļ						
TAZ-II Pursais	- Mathod			Purge V	-1. //		1						
Well Furgii	ig Methou	POD 500	$\sim$	rurge v	01.: 4.	2							
WELL PLIR	CING AN	D RECOVERY	ANALYS	IS: 0(		MSICA	My						
Time	W.L.	Purge Rate	Vol	Temp.	рН	Conduct.	, ,	D.O.	ORP	Sample No.	REMARKS		
10:30	*****	Turge	6.1	31.6	( 71	1.32	7/5		0	Dumpie 110	TILLIAN III		
10:35		-19pm	175	220	101.3	1.89	999				Sidian +		
10:34		13/	741	21.2	1.41	1.87	999						
10:39			3 9	21.4	6.61	1.95	620						
10:40			349	22 -1	641	1.48	341						
10:41			45	21.41	Costs 8	1.99	143						
			-	7.	643								
10:45	37.42												
SAMPLING	3 INFORM	MATION:											
Sample No.		Time	Sampling				Analysis Required						
MW3-2	14107	10:50	disp. bu	i.ke	Von !	Literary	8260 + TPH (whom lange						
1 DOUTION	: 11 TNIFO	TO CA TRONG											
		RMATION:		1 1	1 I.		- 17		17.				
# n	stotery	died	, 5W;	itch(l	1 10	an	10424/	110	<u> ナナヤ・</u>	7			
	i TR									<i>'</i>			
37	5	7 00	70 5	1100	6-1								
31	,501	•											



## **WorleyParsons Komex**

MONITORING WELL SAMPLING FORM

resources & energy

5455 GARDEN GROVE BLVD., SECOND FLOOR WESTMINSTER, CA 92683-8201, USA TEL.: 714.379.1157 FAX.: 714.379.1160

Project Name: APC	Date: 2/14/07
Project No.: HO287 DO20	Time: 11.00
Employee Name: / P + (-)	Page   of /

					_						
WELL CONSTRUCTION DETAIL	S	WELL	LOCATION SKETCH:								
DATES Casing Type:	Pri	Screen Ty	<b>~</b>	<u> </u>	1						
Constructed: Diameter:	<u> </u>	Diamter:	7"								
Developed: Length:		Length:			_		e ' b	Co.			
Last Sampled: T.D.:	17	Slot Size:		$\supset$	7 - 12	514 8	10				
			l				•				
WELL CONDITION: 900 MAN	1 Water I	Depth:									
G.S. Elev.: Water Depth:	37.79	F.P. Thick	l								
T.C. Elev.: Water Column:	9.21	Water Odd									
W.L. Elev: Casing Volume		Turbidity:			1	-					
Note: $2^n = 0.16$ g/ft, $4^n = 0.65$ g/ft, and $6^n = 1.5$	g/ft				ļ						
					İ						
Well Purging Method: Monso		Purge V	ol.: 4,	4							
pυ	iwb		:								
WELL PURGING AND RECOVER	Y ANALYS	IS: V		M5((m	ntu						
Time W.L. Purge Rate	Vol.44	Temp.	pН	Conduct.		D.O.	ORP	Sample No.	REMARKS		
11:10	0.7	18.8	6.62	1.78	334						
11:12 2/94)		20,4	6.75	1.41	999				Sediment		
11:13	12	21.6	6.72	1.80	999				1 1		
11-14	13	20.4	Vi-74	181	730						
13:15	3.8	21-7	6.66	1.83	384						
11:16	4,5	215	662	1.85	239						
11:17	15	22.1	1.63	1.86	275						
11:20 37.78											
" " " " " " " " " " " " " " " " " " " "	1										
;;	-	,							-		
SAMPLING INFORMATION:	- I	<b></b>									
Sample No. Time	Sampling	Method	Containe	ег	Analysis Required						
Mh4-24107 11:25	disp.	1 4		Mash	18260 + 184 14 ban 1 ange						
7.47 4770 1 17.75	111	er it	1		00190			1	,		
	1		<b></b>								
	<u> </u>										
ADDITIONAL INFORMATION:			J								
39.63 =	SCAOL		1//11-	1111	1	10 /1	Well				
31.43	80%	<i>y</i> - <i>y</i> -	IVV	ν <b>ງ</b> _	Jar	U II	1				



ASSOCIATED PLATING COMPANY
FIRST QUARTER 2007 GROUNDWATER MONITORING REPORT
ASSOCIATED PLATING COMPANY, 9636 ANN STREET, SANTA FE SPRINGS, CALIFORNIA

Appendix B Laboratory Analytical Report

152276_1 H0287D: 9 April 2007



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

#### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW1-21407	0702290-01	Liquid	02/14/07 09:25	02/15/07 10:55
EB-021407	0702290-02	Liquid	02/14/07 09:35	02/15/07 10:55
FB-021407	0702290-03	Liquid	02/14/07 09:40	02/15/07 10:55
MW2-21407	0702290-04	Liquid	02/14/07 10:07	02/15/07 10:55
MW3-21407	0702290-05	Liquid	02/14/07 10:50	02/15/07 10:55
MW4-21407	0702290-06	Liquid	02/14/07 11:25	02/15/07 10:55
TB-21407	0702290-07	Liquid	02/14/07 00:00	02/15/07 10:55

#### **CASE NARRATIVE**

SAMPLE RECEIPT: Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION: Samples requiring preservation were verified prior to sample preparation and analysis.

HOLDING TIMES: All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA: All quality objective criteria were met, except as noted in the report with data qualifiers.



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

	Sici	ı a Ali	arytical	Laus, I	IIC.				
Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW1-21407 (0702290-01) Liquid	Sampled: 02/14/07 09:25	Recei	ved: 02/1	5/07 10:55	5				
HC < C8	ND	0.20	mg/L	20	B7B2637	02/22/07	02/26/07	EPA 8015B	
$C8 \le HC < C9$	ND	0.20	"	"	"	"	"	"	
$C9 \le HC < C10$	ND	0.20	"	"	"	"	"	"	
C10 <= HC < C11	ND	0.20	"	"	"	"	"	"	
C11 <= HC < C12	1.3	0.20	"	"	"	"	"	"	
C12 <= HC < C14	1.2	0.20	"	"	"	"	"	"	
C14 <= HC < C16	1.7	0.20	"	"	"	"	"	"	
C16 <= HC < C18	0.70	0.20	"	"	"	"	"	"	
C18 <= HC < C20	1.1	0.20	"	"	"	"	"	"	
C20 <= HC < C24	1.8	0.20	"	"	"	"	"	"	
C24 <= HC < C28	2.0	0.20	"	"	"	"	"	"	
C28 <= HC < C32	2.9	0.20	"	"	"	"	"	"	
HC >= C32	0.94	0.20	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C7-C36)	14	1.0	"	"	"	"	"	"	
Surrogate: o-Terphenyl		%	60-	175	"	"	"	"	S-03
MW2-21407 (0702290-04) Liquid	Sampled: 02/14/07 10:07	Recei	ved: 02/1	5/07 10:55	;				
HC < C8	ND	0.20	mg/L	20	B7B2637	02/22/07	02/26/07	EPA 8015B	
C8 <= HC < C9	ND	0.20	"	"	"	"	"	"	
C9 <= HC < C10	ND	0.20	"	"	"	"	"	"	
C10 <= HC < C11	ND	0.20	"	"	"	"	"	"	
C11 <= HC < C12	0.98	0.20	"	"	"	"	"	"	
C12 <= HC < C14	1.4	0.20	"	"	"	"	"	"	
C14 <= HC < C16	1.5	0.20	"	"	"	"	"	"	
C16 <= HC < C18	0.72	0.20	"	"	"	"	"	"	
C18 <= HC < C20	1.1	0.20	"	"	"	"	"	"	
C20 <= HC < C24	1.3	0.20	"	"	"	"	"	"	
C24 <= HC < C28	1.7	0.20	"	"	"	"	"	"	
C28 <= HC < C32	2.6	0.20	"	"	"	"	"	"	
HC >= C32	0.84	0.20	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C7-C36)	12	1.0	"	"	"	"	"	"	
Surrogate: o-Terphenyl		%	60-		"	"			S-03



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Sierra Analytical Labs, Inc.												
Analyte	Rej Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
MW3-21407 (0702290-05) Liquid	Sampled: 02/14/07 10:50			5/07 10:55								
HC < C8	ND	0.20	mg/L	20	B7B2637	02/22/07	02/26/07	EPA 8015B				
C8 <= HC < C9	ND	0.20	"	"	"	"	"	"				
C9 <= HC < C10	ND	0.20	"	"	"	"	"	"				
C10 <= HC < C11	0.82	0.20	"	"	"	"	"	"				
C11 <= HC < C12	1.2	0.20	"	"	"	"	"	"				
C12 <= HC < C14	3.1	0.20	"	"	"	"	"	"				
C14 <= HC < C16	2.5	0.20	"	"	"	"	"	"				
C16 <= HC < C18	1.9	0.20	"	"	"	"	"	"				
C18 <= HC < C20	1.6	0.20	"	"	"	"	"	"				
C20 <= HC < C24	2.9	0.20	"	"	"	"	"	"				
C24 <= HC < C28	3.1	0.20	"	"	"	"	"	"				
C28 <= HC < C32	4.0	0.20	"	"	"	"	"	"				
HC >= C32	1.4	0.20	"	"	"	"	"	"				
Total Petroleum Hydrocarbons (C7-C36)	23	1.0	"	"	"	"	"	"				
Surrogate: o-Terphenyl		%	60-	175	"	"	"	"	S-03			
MW4-21407 (0702290-06) Liquid	Sampled: 02/14/07 11:25	Recei	ved: 02/1	5/07 10:55	5							
MW4-21407 (0702290-06) Liquid HC < C8	ND	0.20	wed: 02/1 mg/L	5/07 10:55 20	B7B2637	02/22/07	02/26/07	EPA 8015B				
						02/22/07	02/26/07	EPA 8015B				
HC < C8	ND	0.20	mg/L	20	B7B2637							
HC < C8 C8 <= HC < C9	ND ND	0.20 0.20	mg/L	20	B7B2637	"	"	"				
HC < C8 C8 <= HC < C9 C9 <= HC < C10	ND ND ND	0.20 0.20 0.20	mg/L "	20	B7B2637	"	"	"				
HC < C8 C8 <= HC < C9 C9 <= HC < C10 C10 <= HC < C11	ND ND ND ND	0.20 0.20 0.20 0.20	mg/L	20	B7B2637 " "	" "	"	" "				
HC < C8 C8 <= HC < C9 C9 <= HC < C10 C10 <= HC < C11 C11 <= HC < C12	ND ND ND ND 1.2	0.20 0.20 0.20 0.20 0.20	mg/L " " "	20	B7B2637	" " "	" "	11 11 11				
HC < C8 C8 <= HC < C9 C9 <= HC < C10 C10 <= HC < C11 C11 <= HC < C12 C12 <= HC < C14	ND ND ND ND 1.2 1.4	0.20 0.20 0.20 0.20 0.20 0.20	mg/L " " " "	20	B7B2637	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11				
HC < C8 C8 <= HC < C9 C9 <= HC < C10 C10 <= HC < C11 C11 <= HC < C12 C12 <= HC < C14 C14 <= HC < C16	ND ND ND ND 1.2 1.4	0.20 0.20 0.20 0.20 0.20 0.20 0.20	mg/L	20	B7B2637	" " " " " " " " " " " " " " " " " " " "	" " " " " "	" " " " "				
HC < C8 C8 <= HC < C9 C9 <= HC < C10 C10 <= HC < C11 C11 <= HC < C12 C12 <= HC < C14 C14 <= HC < C16 C16 <= HC < C18	ND ND ND ND 1.2 1.4 1.4	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	mg/L	20	B7B2637	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " "				
HC < C8 C8 <= HC < C9 C9 <= HC < C10 C10 <= HC < C11 C11 <= HC < C12 C12 <= HC < C14 C14 <= HC < C16 C16 <= HC < C18 C18 <= HC < C20	ND ND ND ND 1.2 1.4 1.2	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	mg/L	20	B7B2637	11 11 11 11 11	" " " " " " " " "	" " " " " " " "				
HC < C8  C8 <= HC < C9  C9 <= HC < C10  C10 <= HC < C11  C11 <= HC < C12  C12 <= HC < C14  C14 <= HC < C16  C16 <= HC < C18  C18 <= HC < C20  C20 <= HC < C24	ND ND ND ND 1.2 1.4 1.2 0.60	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	mg/L	20	B7B2637	0	" " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11				
HC < C8  C8 <= HC < C9  C9 <= HC < C10  C10 <= HC < C11  C11 <= HC < C12  C12 <= HC < C14  C14 <= HC < C16  C16 <= HC < C18  C18 <= HC < C20  C20 <= HC < C24  C24 <= HC < C28	ND ND ND ND 1.2 1.4 1.4 1.2 0.60 1.6	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	mg/L	20	B7B2637	11 11 11 11 11 11	" " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11				
HC < C8  C8 <= HC < C9  C9 <= HC < C10  C10 <= HC < C11  C11 <= HC < C12  C12 <= HC < C14  C14 <= HC < C16  C16 <= HC < C18  C18 <= HC < C20  C20 <= HC < C24  C24 <= HC < C28  C28 <= HC < C32	ND ND ND ND 1.2 1.4 1.4 1.2 0.60 1.6 1.5 2.4	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	mg/L	20	B7B2637	11 11 11 11 11 11 11						



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Volatile Organic Compounds by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Result	orting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW1-21407 (0702290-01) Liquid	Sampled: 02/14/07 09:25	Recei	ved: 02/1	5/07 10:55	1				
Benzene	ND	1.0	μg/L	1	B7B2112	02/21/07	02/22/07	EPA 8260B	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	15	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	9.2	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	2.4	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Volatile Organic Compounds by EPA Method 8260B Sierra Analytical Labs, Inc.

			ialy ticu						
Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW1-21407 (0702290-01) Liquid	Sampled: 02/14/07 09:25	Recei	ved: 02/1	15/07 10:55					
Naphthalene	ND	1.0	$\mu g/L$	1	B7B2112	02/21/07	02/22/07	EPA 8260B	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	55	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	7.4	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		115 %	86-	118	"	"	"	"	
Surrogate: Toluene-d8		100 %	88-	110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	86-	115	"	"	"	"	
EB-021407 (0702290-02) Liquid	Sampled: 02/14/07 09:35	Receive	ed: 02/15	7/07 10:55					
Benzene	ND	1.0	μg/L	1	B7B2112	02/21/07	02/22/07	EPA 8260B	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromochloromethane	ND	1.0	"	"	"	"	"	m .	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	m .	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"		"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND ND	1.0	"	"	"	"	"	"	
Chloroethane	ND ND	1.0	"	"	,,	"	"	"	
Chloroform	ND ND	1.0	"	"	"	"	"	"	
Chloromethane	ND ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND ND		"	"	"	"	"	"	
Dibromochloromethane	ND ND	1.0	"	,,	,,	"	,,	"	
Dioromocniorometnane	ND	1.0							



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Volatile Organic Compounds by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
EB-021407 (0702290-02) Liquid	Sampled: 02/14/07 09:35	Receive	ed: 02/15	/07 10:55					
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	B7B2112	02/21/07	02/22/07	EPA 8260B	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Volatile Organic Compounds by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte   Result   Result   Units   Dilution   Batch   Prepared   Analyzed   Method	Notes
m,p-Xylene	
o-Xylene         ND         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         " <th< th=""><th></th></th<>	
Surrogate: Dibromofluoromethane         115 %         86-118         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "	
Surrogate: Toluene-d8         99.6 %         88-110         " " " " " " "           FB-021407 (0702290-03) Liquid         Sampled: 02/14/07 09:40         Received: 02/15/07 10:55           Benzene         ND         1.0         µg/L         1         B7B2112         02/21/07         02/22/07         EPA 8260B           Bromobenzene         ND         1.0         " " " " " " " " " " " "         " " " "           Bromochloromethane         ND         1.0         " " " " " " " " " " " "         " " " " " " "           Bromoform         ND         1.0         " " " " " " " " " " " " " "         " " " " " " " " " " " " " " " " " " "	
Surrogate: Toluene-d8         99.6 %         88-110         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         " <td></td>	
Surrogate: 4-Bromofluorobenzene         103 %         86-115         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "	
Benzene         ND         1.0 μg/L         1 B7B2112         02/21/07         02/22/07         EPA 8260B           Bromobenzene         ND         1.0 " " " " " " " " " " " " " " " " " " "	
Bromobenzene         ND         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "	
Bromobenzene         ND         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "	
Bromochloromethane         ND         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "	
Bromodichloromethane         ND         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "	
Bromoform         ND         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         " <t< td=""><td></td></t<>	
Bromomethane         ND         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "	
n-Butylbenzene ND 1.0 " " " " " " " " " sec-Butylbenzene ND 1.0 " " " " " " " " " " " " " " " " " " "	
sec-Butylbenzene ND 1.0 " " " " " "	
·	
Carbon tetrachloride ND 1.0 " " " " " "	
Chlorobenzene ND 1.0 " " " " " "	
Chloroethane ND 1.0 " " " " " "	
Chloroform ND 1.0 " " " " " "	
Chloromethane ND 1.0 " " " " " "	
2-Chlorotoluene ND 1.0 " " " " " "	
4-Chlorotoluene ND 1.0 " " " " " "	
Dibromochloromethane ND 1.0 " " " " " "	
1,2-Dibromo-3-chloropropane ND 5.0 " " " " " "	
1,2-Dibromoethane (EDB)  ND  1.0  """"  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  """  """  """  """  """  """  """  """  """  """  """  ""  """  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  ""  "	
Dibromomethane ND 1.0 " " " " " "	
1,3-Dichlorobenzene ND 1.0 " " " " " " " 1,4-Dichlorobenzene ND 1.0 " " " " " " " " " " " " " " " " " " "	
Dictinorodiffuoromethane ND 1.0	
1,1-Dicinioroetnane ND 1.0	
1,2-Dichiofoethalie ND 1.0	
1,1-Dictilioroethene ND 1.0	
Cis-1,2-Dichiofoethene ND 1.0	
trains-1,2-Dictrioroeutene ND 1.0	
1,2-Dictioropropane ND 1.0	
1,5-Dictioropropane ND 1.0	
2,2-Dichloropropane ND 1.0 " " " " " "	
1,1-Dichloropropene ND 1.0 " " " " " "	
cis-1,3-Dichloropropene ND 1.0 " " " " " "	



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Volatile Organic Compounds by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	R Result	Leporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
FB-021407 (0702290-03) Liquid	Sampled: 02/14/07 09:40	Receive	ed: 02/15	5/07 10:55					
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	B7B2112	02/21/07	02/22/07	EPA 8260B	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		108 %	86	-118	"	"	"	"	
Surrogate: Toluene-d8		97.6 %	88	-110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	86	-115	"	"	"	"	



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Volatile Organic Compounds by EPA Method 8260B Sierra Analytical Labs, Inc.

		porting			_	_			
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW2-21407 (0702290-04) Liquid	Sampled: 02/14/07 10:07	Recei	ved: 02/1	5/07 10:55	1				
Benzene	3.0	1.0	$\mu g/L$	1	B7B2112	02/21/07	02/22/07	EPA 8260B	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	11	1.0	"	"	"	"	"	"	
tert-Butylbenzene	1.6	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	50	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	3.4	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	1.9	1.0	"	"	"	"	"	"	



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Volatile Organic Compounds by EPA Method 8260B Sierra Analytical Labs, Inc.

Sicila Alialytical Labs, file.										
Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
MW2-21407 (0702290-04) Liquid	Sampled: 02/14/07 10:07	Recei	ved: 02/1	5/07 10:55						
Naphthalene	1.9	1.0	μg/L	1	B7B2112	02/21/07	02/22/07	EPA 8260B		
n-Propylbenzene	3.6	1.0	"	"	"	"	"	"		
Styrene	ND	1.0	"	"	"	"	"	"		
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
Tetrachloroethene	ND	1.0	"	"	"	"	"	"		
Toluene	ND	1.0	"	"	"	"	"	"		
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"		
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"		
Trichloroethene	ND	1.0	"	"	"	"	"	"		
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"		
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"		
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
Vinyl chloride	29	1.0	"	"	"	"	"	"		
m,p-Xylene	ND	1.0	"	"	"	"	"	"		
o-Xylene	ND	1.0	"	"	"	"	"	"		
Surrogate: Dibromofluoromethane	1	10 %	86	118	"	"	"	"		
Surrogate: Toluene-d8	99	9.4 %	88-	110	"	"	"	"		
Surrogate: 4-Bromofluorobenzene	1	00 %	86-	115	"	"	"	"		
MW3-21407 (0702290-05) Liquid	Sampled: 02/14/07 10:50	Recei	ved: 02/1	5/07 10:55						
Benzene	2.9	1.0	μg/L	1	B7B2112	02/21/07	02/22/07	EPA 8260B		
Bromobenzene	ND	1.0	"	"	"	"	"	"		
Bromochloromethane	ND	1.0	"	"	"	"	"	"		
Bromodichloromethane	ND	1.0	"	"	"	"	"	"		
Bromoform	ND	1.0	"	"	"	"	"	"		
Bromomethane	ND	1.0	"	"	"	"	"	"		
n-Butylbenzene	ND	1.0	"	"	"	"	"	"		
sec-Butylbenzene	14	1.0	"	"	"	"	"	"		
tert-Butylbenzene	1.8	1.0	"	"	"	"	"	m .		
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"		
Chlorobenzene	ND	1.0	"	"	"	"	"	"		
Chloroethane	ND	1.0	"	"	"	"	"	"		
Chloroform	ND	1.0	"	"	"	"	"	"		
Chloromethane	ND	1.0	"	"	"	"	"	"		
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"		
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"		
Dibromochloromethane	ND	1.0	"	"	"	"	"	"		
Distribution	ND	1.0								



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Volatile Organic Compounds by EPA Method 8260B Sierra Analytical Labs, Inc.

Sierra rimary seen 24009, mer											
Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
MW3-21407 (0702290-05) Liquid	Sampled: 02/14/07 10:50	Recei	ived: 02/1	5/07 10:55							
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	1	B7B2112	02/21/07	02/22/07	EPA 8260B			
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"			
Dibromomethane	ND	1.0	"	"	"	"	"	"			
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"			
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"			
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"			
Dichlorodifluoromethane	ND	1.0	"	"	"	"	"	"			
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"			
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"			
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"			
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"			
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"			
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"			
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"			
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"			
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"			
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"			
Ethylbenzene	1.0	1.0	"	"	"	"	"	"			
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"			
Isopropylbenzene	76	1.0	"	"	"	"	"	"			
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	m .			
Methylene chloride	ND	1.0	"	"	"	"	"	"			
Methyl tert-butyl ether	1.4	1.0	"	"	"	"	"	"			
Naphthalene	2.1	1.0	"	"	"	"	"	"			
n-Propylbenzene	6.0	1.0	"	"	"	"	"	"			
Styrene	ND	1.0	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"			
Tetrachloroethene	ND	1.0	"	"	"	"	"	"			
Toluene	ND	1.0	"	"	"	"	"	m .			
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	m .			
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	m .			
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	m .			
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	m .			
Trichloroethene	ND	1.0	"	"	"	"	"	"			
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"			
Vinyl chloride	44	1.0	"	"	"	"	"	"			
, mji cinoriuc	77	1.0									



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Volatile Organic Compounds by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW3-21407 (0702290-05) Liquid	Sampled: 02/14/07 10:50	Recei	ved: 02/1	5/07 10:55			•		
m,p-Xylene	1.4	1.0	μg/L	1	B7B2112	02/21/07	02/22/07	EPA 8260B	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		12 %	86	118	"	"	"	"	
Surrogate: Toluene-d8		7.2 %	88		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		03 %	86		"	"	"	"	
MW4-21407 (0702290-06) Liquid	Sampled: 02/14/07 11:25								
Benzene	6.9	1.0	μg/L	1	B7B2112	02/21/07	02/22/07	EPA 8260B	
Bromobenzene	ND	1.0	μg/L "	"	"	"	"	" "	
Bromochloromethane	ND ND	1.0		,,	"	"	"	"	
Bromodichloromethane	ND ND	1.0	"	,,	"	"	,,	"	
Bromoform	ND ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	16	1.0	"	"	"	"	"	"	
tert-Butylbenzene	2.1	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND ND	1.0	"	"	"	"	"	"	
Chloroethane	ND ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND ND	1.0	"	"	"	"	"	"	
4-Cinorototuene Dibromochloromethane	ND ND	1.0	,,	,,	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND ND	5.0	.,	,,	"	"	"	"	
1,2-Dibromoethane (EDB)	ND ND	1.0	.,	,,	"	"	"	"	
Dibromomethane	ND ND	1.0	.,	,,	"	"	"	"	
1,2-Dichlorobenzene	ND ND	1.0	.,	,,	"	"	"	"	
1,3-Dichlorobenzene	ND ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	1.1	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	,,		"	,,		"	



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Volatile Organic Compounds by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Reg Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW4-21407 (0702290-06) Liquid	Sampled: 02/14/07 11:25	Recei	ved: 02/	15/07 10:55	5				
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	B7B2112	02/21/07	02/22/07	EPA 8260B	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	81	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	4.3	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	1.3	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	6.1	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	1.5	1.0	"	"	"	"	"	"	
Tetrachloroethene	5.8	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	1.0	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	34	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane	99	9.0 %	86	-118	"	"	"	"	
Surrogate: Toluene-d8	96	8.4 %	88	-110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	1	06 %	86	-115	"	"	"	"	



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Volatile Organic Compounds by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB-21407 (0702290-07) Liquid	Sampled: 02/14/07 00:00	Received	1: 02/15/0	7 10:55					
Benzene	ND	1.0	μg/L	1	B7B2112	02/21/07	02/22/07	EPA 8260B	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	m .	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	m .	
Dichlorodifluoromethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	m .	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	m .	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	m .	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	m .	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND ND	1.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND ND	1.0	"	"	"	"	"	"	



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Volatile Organic Compounds by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB-21407 (0702290-07) Liquid	Sampled: 02/14/07 00:00	Received	d: 02/15/	07 10:55					
Naphthalene	ND	1.0	μg/L	1	B7B2112	02/21/07	02/22/07	EPA 8260B	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethan	e	113 %	86	-118	"	"	"	"	
Surrogate: Toluene-d8		94.2 %	88	-110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	2	109 %	86	-115	"	"	"	"	



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID - Quality Control Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

<b>Batch B7B2637 - EPA 3510C Sep Fu</b>	ınnel								
Blank (B7B2637-BLK1)				Prepared & An	alyzed: 02/22/	07			
HC < C8	ND	0.010	mg/L						
C8 <= HC < C9	ND	0.010	"						
C9 <= HC < C10	ND	0.010	"						
C10 <= HC < C11	ND	0.010	"						
C11 <= HC < C12	ND	0.010	"						
C12 <= HC < C14	ND	0.010	"						
C14 <= HC < C16	ND	0.010	"						
C16 <= HC < C18	ND	0.010	"						
C18 <= HC < C20	ND	0.010	"						
C20 <= HC < C24	ND	0.010	"						
C24 <= HC < C28	ND	0.010	"						
C28 <= HC < C32	ND	0.010	"						
HC >= C32	ND	0.010	"						
Total Petroleum Hydrocarbons (C7-C36)	ND	0.050	"						
Surrogate o-Terphenyl	0.147		"	0.100	147	60-175			
LCS (B7B2637-BS1)				Prepared & An	alyzed: 02/22/	07			
Diesel Range Organics (C10-C24)	0.520	0.050	mg/L	0.500	104	80-120			
LCS (B7B2637-BS2)				Prepared & An	alyzed: 02/22/	07			
Diesel Range Organics (C10-C24)	0.511	0.050	mg/L	0.500	102	80-120			
LCS Dup (B7B2637-BSD1)				Prepared & An	alyzed: 02/22/	07			
Diesel Range Organics (C10-C24)	0.462	0.050	mg/L	0.500	92.4	80-120	11.8	30	



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# **Volatile Organic Compounds by EPA Method 8260B - Quality Control**

#### Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

#### Batch B7B2112 - EPA 5030B P & T

Blank (B7B2112-BLK1)				Prepared: 02/21/07 Analyzed: 02/22/07
Benzene	ND	1.0	μg/L	
Bromobenzene	ND	1.0	"	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	1.0	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	1.0	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	1.0	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	1.0	"	
trans-1,3-Dichloropropene	ND	1.0	"	
Ethylbenzene	ND	1.0	"	
Hexachlorobutadiene	ND	1.0	"	



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Volatile Organic Compounds by EPA Method 8260B - Quality Control

#### Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	B7B2112 ·	. FPA	5030R	P & T
Datti	D/D4114 ·	. Lu A	SUSUD	

Blank (B7B2112-BLK1)				Prepared: 02/2	21/07 Analyzed	d: 02/22/07	
Isopropylbenzene	ND	1.0	μg/L	*			
p-Isopropyltoluene	ND	1.0	"				
Methylene chloride	ND	1.0	"				
Methyl tert-butyl ether	ND	1.0	"				
Naphthalene	ND	1.0	"				
n-Propylbenzene	ND	1.0	"				
Styrene	ND	1.0	"				
1,1,1,2-Tetrachloroethane	ND	1.0	"				
1,1,2,2-Tetrachloroethane	ND	1.0	"				
Tetrachloroethene	ND	1.0	"				
Toluene	ND	1.0	"				
1,2,3-Trichlorobenzene	ND	1.0	"				
1,2,4-Trichlorobenzene	ND	1.0	"				
1,1,1-Trichloroethane	ND	1.0	"				
1,1,2-Trichloroethane	ND	1.0	"				
Trichloroethene	ND	1.0	"				
Trichlorofluoromethane	ND	1.0	"				
1,2,3-Trichloropropane	ND	1.0	"				
1,2,4-Trimethylbenzene	ND	1.0	"				
1,3,5-Trimethylbenzene	ND	1.0	"				
Vinyl chloride	ND	1.0	"				
m,p-Xylene	ND	1.0	"				
o-Xylene	ND	1.0	"				
Surrogate Dibromofluoromethane	49.9		"	50.0	99.8	86-118	
Surrogate Toluene-d8	48.6		"	50.0	97.2	88-110	
Surrogate 4-Bromofluorobenzene	51.7		"	50.0	103	86-115	
LCS (B7B2112-BS1)				Prepared: 02/2	21/07 Analyzed	d: 02/22/07	
Benzene	42.9	1.0	μg/L	50.0	85.8	80-120	
Chlorobenzene	52.2	1.0	"	50.0	104	80-120	
1,1-Dichloroethene	47.5	1.0	"	50.0	95.0	80-120	
Toluene	45.2	1.0	"	50.0	90.4	80-120	
Trichloroethene	45.0	1.0	"	50.0	90.0	80-120	



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

# Volatile Organic Compounds by EPA Method 8260B - Quality Control

#### Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

#### Batch B7B2112 - EPA 5030B P & T

Matrix Spike (B7B2112-MS1)	Source	e: 0702290	0-07	Prepared:	02/21/07	Analyzed	1: 02/22/07			
Benzene	34.3	1.0	μg/L	50.0	ND	68.6	37-151			
Chlorobenzene	46.1	1.0	"	50.0	ND	92.2	37-160			
1,1-Dichloroethene	37.0	1.0	"	50.0	ND	74.0	50-150			
Toluene	36.0	1.0	"	50.0	ND	72.0	47-150			
Trichloroethene	35.5	1.0	"	50.0	ND	71.0	71-157			
Matrix Spike Dup (B7B2112-MSD1)	Sourc	e: 0702290	0-07	Prepared:	02/21/07	Analyzed	1: 02/22/07			
Benzene	37.6	1.0	μg/L	50.0	ND	75.2	37-151	9.18	30	
Chlorobenzene	50.3	1.0	"	50.0	ND	101	37-160	8.71	30	
1,1-Dichloroethene	41.5	1.0	"	50.0	ND	83.0	50-150	11.5	30	
Toluene	41.3	1.0	"	50.0	ND	82.6	47-150	13.7	30	
Trichloroethene	42.1	1.0	"	50.0	ND	84.2	71-157	17.0	30	



Project: APC
Project Number: H0287D
Project Manager: Lee Paprocki

**Reported:** 02/27/07 16:12

#### **Notes and Definitions**

S-03 Surrogate diluted out.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

#### CHAIN OF CUSTODY RECORD

**SIERRA ANALYTICAL** 

TEL: 949•348•9389 FAX: 949•348•9115

26052 Merit Circle• Suite 105•Laguna Hills, CA•92653

00100		2 14 17	)
		Date: 2 / 14 / 07	Page

Lab Project No.:

Client: Walker Lu	<u> </u>	Analysis Requested  Geotracker EDD Inf									Geotracker EDD Info:								
Client Address: 3455 Gard		DO OXY WE	- id	7									The state of the s						
										36									Client LOGCODE
Turn Around Immediate 24 Hour  Client Tel. No.: 714 - 374 - 1157  Turn Around Immediate 24 Hour  Time Requested 48 Hour 72 Hour									(ai)	5									CHEIR LOGCODE
Client Tel. No.: 7/4 - 3 Client Fax. No.: 7/4 - 3		4 Day 5 Day				E.	1									01. 21.1.1.			
Client Proj. Mgr.: LCC Paprocki									10	"									Site Global ID
Client Sample ID.	Sierra No.	Date	Time	Matrix	Preservative	Container Type	No. of Containers	BoxOB Full YOKS	SOISD										Field Point Names/ Comments
MW1-21407		2/4/07	9:25	W	HCL	Likeunle		X	X							$\perp$			
EB-021-107			9:35				\$3	X								$\perp$			
FB-021407	18 18 A		9:40				32	X				1							
MW2-21407			10:07	1			43	X	X	-	1								
MW3-21407			10:50				23	X	X										
MV4-21407			11:25	V		V	E 3	X	X										
TB-21407		2/14/07	· —	W	1707	voa	1	X											
,																			
	2.5																		
Shipped Via:									1	_	Total Number of Containers Submitted					d to	Sample Disposal:		
Printed Name 11 Papsoch			(Car	(Carrier/Waybill No.)						1	Laboratory						Return to Client		
Relinguished By: Date				Received By:							nples and the signature on this chain of custody form constitutes rform the analysis specified above under SIERRA's Terms and								★ Lab Disposal*
Walter Paras Yamas								Cond	Conditions, unless otherwise agreed upon in writing between SIERRA and CL *- Samples determined to be hazardous by SIERRA will be returned to CLIF									IENT.	D Amil'
Company: Time:  Time:  Relinquished By:  Date			Con	Company:				+-				stol N	mb	of C	onto:-		) pon!	ve4	Archive mos.
Relinquished By: Date			Rec	Received By:				+			l i	otal Nu y Labo			ontaine	15 K	cece!\	veu	☐ Other
Company: Time:			Con	Company:				المراوي ا	0, 200,000,										
Relinquished By: Date			Rec	Received By:				17029.9		Kappingori	TORY	USE C	200 E			MSE7=		1150000	\$464990 C. Marker and St. 1981
Company: Time:				Company:					Inta	September 1		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		1000	Chilled	S & 200	1	and Jun	
	bill to KP 15247, send EDF to Jasmin Please e-mail Lee 1854/15 - thanks								PHASE.	nple Sea	200	in the second		1000	Preserv	2	s - Ye	ntied	БУ
bill to KY 13 ari	, who	1 1	, v	ر ۱۱	- th	inhs				perly La	ligo Golas est	Zi.	- 1 - 12 - 12		Other .			10	120000
PHUSE (-	ma1	1 /6	e 11	2417	2 , , X	(1) 12			App	propriate	e Sample	Contair	ier	67 (1) 39	Storage	42	ation		234